Save Load
GitHub 切换暗/亮/自动模式 切换暗/亮/自动模式 切换暗/亮/自动模式 返回首页

设计模式:一、创建型:1、单例( Singleton)

1、单例(Singleton)

Intent

确保一个类只有一个实例,并提供该实例的全局访问点。

Class Diagram

使用一个私有构造函数、一个私有静态变量以及一个公有静态函数来实现。

image

私有构造函数保证了不能通过构造函数来创建对象实例,只能通过公有静态函数返回唯一的私有静态变量。

Implementation

Ⅰ 懒汉式-线程不安全

以下实现中,私有静态变量 uniqueInstance 被延迟实例化,这样做的好处是,如果没有用到该类,那么就不会实例化 uniqueInstance,从而节约资源。

这个实现在多线程环境下是不安全的,如果多个线程能够同时进入 if (uniqueInstance == null) ,并且此时 uniqueInstance 为 null,那么会有多个线程执行 uniqueInstance = new Singleton(); 语句,这将导致实例化多次 uniqueInstance

public class Singleton {

    private static Singleton uniqueInstance;

    private Singleton() {
    }

    public static Singleton getUniqueInstance() {
        if (uniqueInstance == null) {
            uniqueInstance = new Singleton();
        }
        return uniqueInstance;
    }
}
Ⅱ 饿汉式-线程安全

线程不安全问题主要是由于 uniqueInstance 被实例化多次,采取直接实例化 uniqueInstance 的方式就不会产生线程不安全问题。

但是直接实例化的方式也丢失了延迟实例化带来的节约资源的好处。

private static Singleton uniqueInstance = new Singleton();
Ⅲ 懒汉式-线程安全

只需要对 getUniqueInstance() 方法加锁,那么在一个时间点只能有一个线程能够进入该方法,从而避免了实例化多次 uniqueInstance。

但是当一个线程进入该方法之后,其它试图进入该方法的线程都必须等待,即使 uniqueInstance 已经被实例化了。这会让线程阻塞时间过长,因此该方法有性能问题,不推荐使用

public static synchronized Singleton getUniqueInstance() {
    if (uniqueInstance == null) {
        uniqueInstance = new Singleton();
    }
    return uniqueInstance;
}
Ⅳ 双重校验锁-线程安全

uniqueInstance 只需要被实例化一次,之后就可以直接使用了。加锁操作只需要对实例化那部分的代码进行,只有当 uniqueInstance 没有被实例化时,才需要进行加锁。

双重校验锁先判断 uniqueInstance 是否已经被实例化,如果没有被实例化,那么才对实例化语句进行加锁。

public class Singleton {

    private volatile static Singleton uniqueInstance;

    private Singleton() {
    }

    public static Singleton getUniqueInstance() {
        if (uniqueInstance == null) {
            synchronized (Singleton.class) {
                if (uniqueInstance == null) {
                    uniqueInstance = new Singleton();
                }
            }
        }
        return uniqueInstance;
    }
}

uniqueInstance 采用 volatile 关键字修饰也是很有必要的, uniqueInstance = new Singleton(); 这段代码其实是分为三步执行:

  1. 为 uniqueInstance 分配内存空间
  2. 初始化 uniqueInstance
  3. 将 uniqueInstance 指向分配的内存地址

但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1>3>2。指令重排在单线程环境下不会出现问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getUniqueInstance() 后发现 uniqueInstance 不为空,因此返回 uniqueInstance,但此时 uniqueInstance 还未被初始化。

使用 volatile 可以禁止 JVM 的指令重排,保证在多线程环境下也能正常运行。

Ⅴ 静态内部类实现

当 Singleton 类被加载时,静态内部类 SingletonHolder 没有被加载进内存。只有当调用 getUniqueInstance() 方法从而触发 SingletonHolder.INSTANCE 时 SingletonHolder 才会被加载,此时初始化 INSTANCE 实例,并且 JVM 能确保 INSTANCE 只被实例化一次。

这种方式不仅具有延迟初始化的好处,而且由 JVM 提供了对线程安全的支持。

public class Singleton {

    private Singleton() {
    }

    private static class SingletonHolder {
        private static final Singleton INSTANCE = new Singleton();
    }

    public static Singleton getUniqueInstance() {
        return SingletonHolder.INSTANCE;
    }
}
Ⅵ 枚举实现
public enum Singleton {

    INSTANCE;

    private String objName;


    public String getObjName() {
        return objName;
    }


    public void setObjName(String objName) {
        this.objName = objName;
    }


    public static void main(String[] args) {

        // 单例测试
        Singleton firstSingleton = Singleton.INSTANCE;
        firstSingleton.setObjName("firstName");
        System.out.println(firstSingleton.getObjName());
        Singleton secondSingleton = Singleton.INSTANCE;
        secondSingleton.setObjName("secondName");
        System.out.println(firstSingleton.getObjName());
        System.out.println(secondSingleton.getObjName());

        // 反射获取实例测试
        try {
            Singleton[] enumConstants = Singleton.class.getEnumConstants();
            for (Singleton enumConstant : enumConstants) {
                System.out.println(enumConstant.getObjName());
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}
firstName
secondName
secondName
secondName

该实现可以防止反射攻击。在其它实现中,通过 setAccessible() 方法可以将私有构造函数的访问级别设置为 public,然后调用构造函数从而实例化对象,如果要防止这种攻击,需要在构造函数中添加防止多次实例化的代码。该实现是由 JVM 保证只会实例化一次,因此不会出现上述的反射攻击。

该实现在多次序列化和序列化之后,不会得到多个实例。而其它实现需要使用 transient 修饰所有字段,并且实现序列化和反序列化的方法。